Detection of Atrial Fibrillation Using Markov Regime Switching Models of Heart Rate Intervals
نویسندگان
چکیده
منابع مشابه
Estimation of Markov Regime-Switching Regression Models with Endogenous Switching
Following Hamilton (1989), estimation of Markov regime-switching regressions typically relies on the assumption that the latent state variable controlling regime change is exogenous. We relax this assumption and develop a parsimonious model of endogenous Markov regime-switching. Inference via maximum likelihood estimation is possible with relatively minor modifications to existing recursive fil...
متن کاملBayesian Markov Regime-Switching Models for Cointegration
This paper introduces a Bayesian Markov regime-switching model that allows the cointegration relationship between two time series to be switched on and off over time. Unlike classical approaches for testing and modeling cointegration, the Bayesian Markov switching method allows for estimation of the regime-specific model parameters via Markov Chain Monte Carlo and generates more reliable estima...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولAtrial fibrillation detection by heart rate variability in Poincare plot
BACKGROUND Atrial fibrillation (AFib) is one of the prominent causes of stroke, and its risk increases with age. We need to detect AFib correctly as early as possible to avoid medical disaster because it is likely to proceed into a more serious form in short time. If we can make a portable AFib monitoring system, it will be helpful to many old people because we cannot predict when a patient wil...
متن کاملAutocovariance Structure of Markov Regime Switching Models and Model Selection
We show that the covariance function of a second-order stationary vector Markov regime switching time series has a vector ARMA(p; q) representation, where upper bounds for p and q are elementary functions of the number of regimes. These bounds apply to vector Markov regime switching processes with both mean-variance and autoregressive switching. This result yields an easily computed method for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Industrial Engineers
سال: 2016
ISSN: 1225-0988
DOI: 10.7232/jkiie.2016.42.4.290